Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172629, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38649057

RESUMO

In the context of the increasing global use of ethanol biofuel, this work investigates the concentrations of ethanol, methanol, and acetaldehyde, in both the gaseous phase and rainwater, across six diverse urban regions and biomes in Brazil, a country where ethanol accounts for nearly half the light-duty vehicular fuel consumption. Atmospheric ethanol median concentrations in São Paulo (SP) (12.3 ± 12.1 ppbv) and Ribeirão Preto (RP) (12.1 ± 10.9 ppbv) were remarkably close, despite the SP vehicular fleet being ∼13 times larger. Likewise, the rainwater VWM ethanol concentration in SP (4.64 ± 0.38 µmol L-1) was only 26 % higher than in RP (3.42 ± 0.13 µmol L-1). This work demonstrated the importance of evaporative emissions, together with biomass burning, as sources of the compounds studied. The importance of biogenic emissions of methanol during forest flooding was identified in campaigns in the Amazon and Atlantic forests. Marine air masses arriving at a coastal site led to the lowest concentrations of ethanol measured in this work. Besides vehicular and biomass burning emissions, secondary formation of acetaldehyde by photochemical reactions may be relevant in urban and non-urban regions. The combined deposition flux of ethanol and methanol was 6.2 kg ha-1 year-1, avoiding oxidation to the corresponding and more toxic aldehydes. Considering the species determined here, the ozone formation potential (OFP) in RP was around two-fold higher than in SP, further evidencing the importance of emissions from regional distilleries and biomass burning, in addition to vehicles. At the forest and coastal sites, the OFP was approximately 5 times lower than at the urban sites. Our work evidenced that transition from gasoline to ethanol or ethanol blends brings the associated risk of increasing the concentrations of highly toxic aldehydes and ozone, potentially impacting the atmosphere and threatening air quality and human health in urban areas.


Assuntos
Acetaldeído , Poluentes Atmosféricos , Monitoramento Ambiental , Etanol , Metanol , Chuva , Brasil , Acetaldeído/análise , Etanol/análise , Metanol/análise , Poluentes Atmosféricos/análise , Cidades
2.
Environ Sci Pollut Res Int ; 30(13): 37174-37184, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36571691

RESUMO

Understanding the seasonal patterns and influencing factors of nitrogen atmospheric deposition is essential to evaluate human impacts on the air quality and nitrogen biogeochemical cycle. However, evaluation of the nitrogen deposition flux, especially in South America agricultural regions, has not been fully investigated. In this paper, we quantified the atmospheric wet deposition fluxes of total dissolved nitrogen (TDN), dissolved organic nitrogen (DON), and dissolved inorganic nitrogen (DIN), in a region with agricultural and livestock predominance in the Southern Minas Gerais region, Brazil, from May 2018 to April 2019. Deposition fluxes of nitrogen species in the wet season (October-March) were on average 4.8-fold higher than those in the dry season, which revealed significant seasonal variations driven largely by the seasonality of rainfall and agricultural operations. We also found high NO3-/NH4+ ratios (average = 8.25), with higher values in dry season (NO3-/NH4+ = 12.8) in comparison with wet season (NO3-/NH4+ = 4.48), which revealed a higher relative contribution of NOx emissions from traffic sources in dry season. We also estimated the influence of atmospheric deposition of inorganic nitrogen (N-DIN) on environmental ecosystems, being 2.01 kgNha-1 year-1 with potential risk of acidification and eutrophication of 30%. Therefore, attention should be paid to the role of wet atmospheric deposition of nitrogen as a source of nitrogen environmental pollution in agricultural regions.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Nitrogênio , Humanos , Poluentes Atmosféricos/análise , Brasil , Ecossistema , Nitrogênio/análise , Estações do Ano
3.
Sci Total Environ ; 824: 153728, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35157860

RESUMO

Biosphere-atmosphere interactions play a key role in urban chemistry because of biogenic volatile organic compound (BVOC) emissions. Of the BVOC, isoprene is the most emitted compound; however, it also has anthropogenic origins in urban areas. In this study, we aimed to investigate the spatio-temporal variability and atmospheric impacts of biogenic and anthropogenic isoprene in the subtropical megacity of São Paulo (MASP), Brazil. Several measurement campaigns were conducted in three different urban Atlantic forests (Matão, PEFI, and RMG), and an urban background site (IAG); this equated to a total of 268 samples for the 2018-2019 period. For all sampling points, daytime average concentrations of isoprene were two to three times higher during the rainy season (IAG: 1.75 ± 0.93 ppb; Matão: 0.87 ± 0.35 ppb; PEFI: 0.50 ± 0.30 ppb; RMG: 0.37 ± 0.18 ppb), than those observed during the dry season (IAG: 0.46 ± 0.24 ppb; Matão: 0.31 ± 0.17 ppb; PEFI: 0.17 ± 0.11 ppb; RMG: 0.11 ± 0.07 ppb). Average isoprene concentrations were similar to those observed in other places worldwide, with the exception of the Amazon forest. Our results indicate differences in isoprene concentrations between sites, suggesting that environmental conditions such as the urban heat island and vegetation types, may play a role in spatial variability. Estimates of the isoprene fraction indicated that the biogenic fraction (85%) surpassed the anthropogenic fraction during the rainy season. By contrast, the anthropogenic fraction (52%) exceeded the biogenic fraction during dry periods. These fractions have an impact on potentially forming secondary pollutants gaseous (ozone formation potential: 7.19-33.32 µg m-3), and aerosols (secondary organic aerosols formation potential: 0.41-1.88 µg m-3). These results highlight the role of biogenic isoprene and its potential impact on urban air quality in subtropical megacities; this requires further investigation under future climate change scenarios.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Aerossóis , Poluentes Atmosféricos/análise , Brasil , Butadienos , Cidades , Florestas , Hemiterpenos , Temperatura Alta , Compostos Orgânicos Voláteis/análise
4.
Mar Pollut Bull ; 173(Pt B): 113085, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34710672

RESUMO

Over 5000 tons of spilled oil reached the northeast coast of Brazil in 2019. The Laboratory for Computational Methods in Engineering (LAMCE/COPPE/UFRJ) employed time-reverse modeling and identify multiple potential source areas. As time-reverse modeling has many uncertainties, this article carried out a methodology study to mitigate them. A probabilistic modeling using Monte Carlo approach was developed to test these source areas with the Spill, Transport, and Fate Model (STFM) and a scenario tree methodology was used to select possible spill scenarios. To estimate the performance of Lagrangian models, two new model performance evaluations were added to Chang and Hanna (2004). The combination of probabilistic simulations, scenario tree analysis, and model performance evaluation proved to be a powerful tool for mitigating the uncertainties of time-reverse modeling, yielding good results and simple implementation.


Assuntos
Poluição por Petróleo , Brasil , Método de Monte Carlo , Incerteza
5.
Mar Pollut Bull ; 165: 112125, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33582423

RESUMO

In 2019-2020, a mysterious oil spill reached a large part of the Brazilian coast. In order to contribute to the clarification part of these mysteries involving this accident, the present study aims to estimate the initial volume spilled using the STFM (Spill, Transport and Fate Model). We started from the hypothesis that the leak was caused by tanker buoyancy problems (hull rupture or engine failure), resulting in slow loss of part of its cargo (leaking or dumping) in the subsurface waters. The estimated volume (5000-12,500 m3) was similar to that expected in a continuous leak from an internal compartment tanker with the size between PANAMAX and SUEZMAX. This volume may have been the largest oil spill on the Brazilian coast since 2004, and it caused institutional and socioeconomic crisis because of the poor management of public resources.


Assuntos
Poluição por Petróleo , Acidentes , Brasil
6.
Environ Sci Pollut Res Int ; 28(18): 23448-23458, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33443734

RESUMO

Since 2000s, several studies have been reporting an increase of alkaline species in atmospheric deposition worldwide. This study aims to evaluate and give a better understanding about atmospheric deposition chemistry collected in Lavras, a Brazilian city with rural background. Bulk atmospheric deposition samples were collected from March 2018 to February 2019 and major ionic species were quantified. The pH values ranged from 5.52 to 8.29, with an average of 5.92 and most deposition samples (~ 94%) were alkaline (pH > 5.60). For the whole sampling campaign, the ions profile in volume weighted mean (VWM) was described as follows: Ca2+ (35.02) > NH4+ (11.26) > Cl- (11.19) > Mg2+ (9.04) > NO3- (8.57) > Na+ (5.65) > K+ (2.61) > SO42- (2.43) > H+ (0.94) µmol L-1. We identified Ca2+ and NH4+ as the most predominant species accounting for 53% of the total ionic species distribution. In addition, all samples showed neutralization factor (NF) index greater than 1, with mean value of 6.4. Regarding regression analysis, acidity neutralization precursors such as calcium and ammonia accounted for 50% and 4%, respectively. In addition, samples alkaline pattern was mainly due to agricultural sources, including fertilizer production and application, and cement manufacturing inside the county air basin.


Assuntos
Poluentes Atmosféricos , Chuva , Poluentes Atmosféricos/análise , Brasil , Monitoramento Ambiental , Íons/análise
7.
Sci Total Environ ; 738: 139790, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32559485

RESUMO

In South America, the observations of atmospheric pollutants are deficient, and few cities have implemented air quality monitoring programs. In addition, Volatile Organic Compounds (VOCs) observations are still missing, and little is known about their contributions to the atmospheric composition and impacts in a large ethanol usage context like Brazil. Here, we present a wide range of VOCs that have been measured for ten years in São Paulo Megacity (SPM) in different campaigns at traffic, urban and background sites. When compared with other cities worldwide, the average VOCs ambient concentrations in SPM were higher by factors of 2 to 10. However, the ambient VOCs distribution among these cities is homogeneous even for ethanol, aldehydes and alkenes species. Emission ratios (ER) were established related to carbon monoxide and acetylene, which did not depict strong seasonal and interannual variability in SPM. When compared with previous studies, ERs showed an enrichment from road-tunnel to background, suggesting the presence of other sources than traffic. A good agreement in ER was found with Los Angeles and Paris; but limited consistencies with Middle East and Asia cities. Our ethanol measurements show that contrasted ER can be obtained depending on the emission process involved, with a strong impact of evaporation on ethanol concentrations. The multiyear acetaldehyde analysis displayed that ER could be a valuable metric to assess the long-term changes in emissions sources. Finally, VOCs emissions were calculated from ER and compared with those estimated by the global emission inventory (Edgar). The total VOC emissions estimated by the global inventory agree very well with those from our observations up to 75%. Nevertheless, the VOCs speciation is misrepresented in the inventory, mainly for oxygenated and heavier alkanes compounds. These inconsistencies will also have an impact on the quantification of secondary atmospheric pollutants formation associated to road transport emissions.

8.
Environ Sci Pollut Res Int ; 23(19): 19876-86, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27424201

RESUMO

Ammonia is a key alkaline species, playing an important role by neutralizing atmospheric acidity and inorganic secondary aerosol production. On the other hand, the NH3/NH4 (+) increases the acidity and eutrophication in natural ecosystems, being NH3 classified as toxic atmospheric pollutant. The present study aims to give a better comprehension of the nitrogen content species distribution in fine and coarse particulate matter (PM2.5 and PM2.5-10) and to quantify ammonia vehicular emissions from an urban vehicular tunnel experiment in the metropolitan area of São Paulo (MASP). MASP is the largest megacity in South America, with over 20 million inhabitants spread over 2000 km(2) of urbanized area, which faces serious environmental problems. The PM2.5 and PM2.5-10 median mass concentrations were 44.5 and 66.6 µg m(-3), respectively, during weekdays. In the PM2.5, sulfate showed the highest concentration, 3.27 ± 1.76 µg m(-3), followed by ammonium, 1.14 ± 0.71 µg m(-3), and nitrate, 0.80 ± 0.52 µg m(-3). Likewise, the dominance (30 % of total PM2.5) of solid species, mainly the ammonium salts, NH4HSO4, (NH4)2SO4, and NH4NO3, resulted from simulation of inorganic species. The ISORROPIA simulation was relevant to show the importance of environment conditions for the ammonium phase distribution (solid/aqueous), which was solely aqueous at outside and almost entirely solid at inside tunnel. Regarding gaseous ammonia concentrations, the value measured inside the tunnel (46.5 ± 17.5 µg m(-3)) was 3-fold higher than that outside (15.2 ± 11.3 µg m(-3)). The NH3 vehicular emission factor (EF) estimated by carbon balance for urban tunnel was 44 ± 22 mg km(-1). From this EF value and considering the MASP traffic characteristics, it was possible to estimate more than 7 Gg NH3 year(-1) emissions that along with NOx are likely to cause rather serious problems to natural ecosystems in the region.


Assuntos
Poluentes Atmosféricos , Amônia , Gases , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Amônia/análise , Amônia/química , Monitoramento Ambiental/métodos , Gases/análise , Gases/química , Água
9.
Environ Technol ; 37(6): 768-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26269005

RESUMO

One of the problems in waste water treatment plants (WWTPs) is the increase in emissions of hydrogen sulphide (H2S), which can cause damage to the health of human populations and ecosystems. To control emissions of this gas, sulphur-oxidizing bacteria can be used to convert H2S to sulphate. In this work, sulphate detection was performed by spectrophotometry, ion chromatography and atomic absorption spectrometry, using Paracoccus pantotrophus ATCC 35512 as a reference strain growing in an inorganic broth supplemented with sodium thiosulphate (Na2S2O3·5H2O), sodium sulphide (Na2S) or sodium sulphite (Na2SO3), separately. The strain was metabolically competent in sulphate production. However, it was only possible to observe significant differences in sulphate production compared to abiotic control when the inorganic medium was supplemented with sodium thiosulphate. The three methods for sulphate detection showed similar patterns, although the chromatographic method was the most sensitive for this study. This strain can be used as a reference for sulphate production in studies with sulphur-oxidizing bacteria originating from environmental samples of WWTPs.


Assuntos
Paracoccus pantotrophus/metabolismo , Sulfatos/metabolismo , Sulfetos/metabolismo , Sulfitos/metabolismo , Tiossulfatos/metabolismo
10.
J Air Waste Manag Assoc ; 64(5): 519-28, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24941700

RESUMO

Several studies indicate that mortality and morbidity can be well correlated to atmospheric aerosol concentrations with aerodynamic diameter less than 2.5 microm (PM2.5). In this work the PM2.5 at Recife city was analyzed as part of a main research project (INAIRA) to evaluate the air pollution impact on human health in six Brazilian metropolitan areas. The average concentration, for 309 samples (24-hr), from June 2007 to July 2008, was 7.3 microg/m3, with an average of 1.1 microg/m3 of black carbon. The elemental concentrations of samples were obtained by x-ray fluorescence. The concentrations were then used for characterizing the aerosol, and also were employed for receptor modelling to identify the major local sources of PM2.5. Positive matrix factorization analysis indicated six main factors, with four being associated to soil dust, vehicles and sea spray, metallurgical activities, and biomass burning, while for a chlorine factor, and others related to S, Ca, Br, and Na, we could make no specific source association. Principal component analysis also indicated six dominant factors, with some specific characteristics. Four factors were associated to soil dust, vehicles, biomass burning, and sea spray, while for the two others, a chlorine- and copper-related factor and a nickel-related factor, it was not possible to do a specific source association. The association of the factors to the likely sources was possible thanks to meteorological analysis and sources information. Each model, although giving similar results, showed factors' peculiarities, especially for source apportionment. The observed PM2.5 concentration levels were acceptable, notwithstanding the high urbanization of the metropolitan area, probably due to favorable conditions for air pollution dispersion. More than a valuable historical register these results should be very important for the next analysis, which will correlate health data, PM2.5 levels, and sources contributions in the context of the six studied Brazilian metropolises.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Brasil , Humanos , Fatores de Tempo , Tempo (Meteorologia)
11.
Environ Monit Assess ; 186(2): 1183-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24122140

RESUMO

Wet deposition is an important process that removes pollutants from the atmosphere and transfers them to waters and soil. The goal of this study was to assess the biological effects of the atmospheric contamination of rainwater in the metropolitan area of São Paulo (MASP) using Daphnia similis, Ceriodaphnia dubia, and Vibrio fischeri. Experimental assays were carried out according to standard toxicity methodology. Twenty-three rainwater samples were collected from October 2007 to December 2008, at the Nuclear Research Institute (IPEN), in MASP. Major ions were determined by ionic chromatography, which showed NH4(+) and NO3(-) as prevalent ions. Ecotoxicological results confirmed toxic potential of rainwater, as all samples were toxic to D. similis and C. dubia. The V. fischeri luminescence reduction confirmed those negative effects of rainwater and percentage inhibition of relative luminescence ranged from 0.2 to 0.9 for 16 samples. Worse conditions were observed during the rainy season, suggesting convective rains are more effective in transferring contaminants and toxicity from atmosphere to surface.


Assuntos
Monitoramento Ambiental , Chuva/química , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri , Animais , Brasil , Cladocera , Daphnia , Poluentes Químicos da Água/análise
12.
Air Qual Atmos Health ; 5(1): 63-77, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22408694

RESUMO

In urban areas of Brazil, vehicle emissions are the principal source of fine particulate matter (PM(2.5)). The World Health Organization air quality guidelines state that the annual mean concentration of PM(2.5) should be below 10 µg m(-3). In a collaboration of Brazilian institutions, coordinated by the University of São Paulo School of Medicine and conducted from June 2007 to August 2008, PM(2.5) mass was monitored at sites with high traffic volumes in six Brazilian state capitals. We employed gravimetry to determine PM(2.5) mass concentrations, reflectance to quantify black carbon concentrations, X-ray fluorescence to characterize elemental composition, and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM(2.5) concentrations and proportions of black carbon (BC) in the cities of São Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Recife, and Porto Alegre were 28.1 ± 13.6 µg m(-3) (38% BC), 17.2 ± 11.2 µg m(-3) (20% BC), 14.7 ± 7.7 µg m(-3) (31% BC), 14.4 ± 9.5 µg m(-3) (30% BC), 7.3 ± 3.1 µg m(-3) (26% BC), and 13.4 ± 9.9 µg m(-3) (26% BC), respectively. Sulfur and minerals (Al, Si, Ca, and Fe), derived from fuel combustion and soil resuspension, respectively, were the principal elements of the PM(2.5) mass. We discuss the long-term health effects for each metropolitan region in terms of excess mortality risk, which translates to greater health care expenditures. This information could prove useful to decision makers at local environmental agencies.

13.
Air Qual Atmos Health ; 5(1): 79-88, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22408695

RESUMO

In Brazil, the principal source of air pollution is the combustion of fuels (ethanol, gasohol, and diesel). In this study, we quantify the contributions that vehicle emissions make to the urban fine particulate matter (PM(2.5)) mass in six state capitals in Brazil, collecting data for use in a larger project evaluating the impact of air pollution on human health. From winter 2007 to winter 2008, we collected 24-h PM(2.5) samples, employing gravimetry to determine PM(2.5) mass concentrations; reflectance to quantify black carbon concentrations; X-ray fluorescence to characterize elemental composition; and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM(2.5) concentrations in the cities of São Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Porto Alegre, and Recife were 28, 17.2, 14.7, 14.4, 13.4, and 7.3 µg/m(3), respectively. In São Paulo and Rio de Janeiro, black carbon explained approximately 30% of the PM(2.5) mass. We used receptor models to identify distinct source-related PM(2.5) fractions and correlate those fractions with daily mortality rates. Using specific rotation factor analysis, we identified the following principal contributing factors: soil and crustal material; vehicle emissions and biomass burning (black carbon factor); and fuel oil combustion in industries (sulfur factor). In all six cities, vehicle emissions explained at least 40% of the PM(2.5) mass. Elemental composition determination with receptor modeling proved an adequate strategy to identify air pollution sources and to evaluate their short- and long-term effects on human health. Our data could inform decisions regarding environmental policies vis-à-vis health care costs.

14.
Environ Monit Assess ; 149(1-4): 241-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18228152

RESUMO

In the metropolitan area of São Paulo, Brazil, ozone and particulate matter (PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors (nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Jânio Quadros and Maria Maluf road tunnels, both located in São Paulo. The Jânio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Jânio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 microg km(-1), respectively, and 16, 197, 127 and 92 mg km(-1), respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in São Paulo tunnels are higher than those found in other cities of the world.


Assuntos
Poluição do Ar/análise , Cidades , Material Particulado , Emissões de Veículos , Brasil , Monitoramento Ambiental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...